Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение ЛИУ первого рода




Метод дискретизации

Метод последовательных приближений

Методы решения

Будем решать ЛИУ Фредгольма 1-го и 2-го рода, применяя в каждом случае методы последовательных приближений и дискретизации.

Предположим, что решение ЛИУ Фредгольма 2-го рода (2.9.2) можно представить в виде

(2.9.3)

(2.9.4)

Если

(2.9.5)

то ряд (2.9.3) сходится.

Т.к. мы не можем численно вычислить сумму бесконечного ряда, ограничимся m его членами:

(2.9.6)

Параметр m подбирается таким образом, чтобы погрешность формулы (2.9.6) не превышала заранее заданной величины ε. Погрешность формулы (2.9.6) определяется выражением

(2.9.7)

Введем сетку по переменным x и s:

(2.9.8)

Здесь Aj – квадратурные коэффициенты. Тогда вместо (2.9.2) получим СЛАУ

(2.9.9)

или, в матричном виде,

(2.9.10)

В общем случае, ЛИУ Фредгольма 1-го рода можно свести ко 2-му роду, тогда вместо (2.9.1) получим

(2.9.11)

Очевидно, что модифицированное ядро задано уже на квадрате [a ≤ s ≤ b, a ≤ x ≤ b], как и ядро уравнения (2.9.2). Далее задача решается рассмотренными выше методами. Остается единственная проблема – поиск положительного параметра α. Для этого оценим невязку решения ЛИУ:

(2.9.12)

Если полученная невязка удовлетворяет заданной погрешности, то считаем задачу решенной. Таким образом, решаем задачу (2.9.11) при различных значениях α, пока очередное решение yα(x) не станет достаточно точным.

Для простоты положим c = a и d = b.




Поделиться с друзьями:


Дата добавления: 2014-11-20; Просмотров: 421; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.