КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Регрессионный анализ
Основы статистического исследования зависимостей. Исследованием зависимостей занимаются такие разделы математической статистики, как регрессионный анализ и дисперсионный анализ. Рассмотрим эти разделы.
Многие экономические задачи требуют установить и оценить зависимость двух или более двух случайных величин. Эта зависимость может быть функциональной, статистической или совсем отсутствовать. Отсутствие связи характерно для независимых случайных величин. Определение: Если каждому значению случайной величины Х соответствует вполне определенное значение случайной величины Y, то говорят, что Х и Y связаны функциональной зависимостью. Эта зависимость реализуется редко, т.к. обе величины подвержены действию случайных факторов. Определение: Если каждому значению случайной величины Х соответствует вполне определенный закон распределения случайной величины Y, то говорят, что Х и Y имеет статистическую зависимость. Частным случаем статистической зависимости является корреляционная зависимость, когда при изменении одной из величин изменяется среднее значение другой. Определение: Если при изменении случайной величины Х меняется функция распределения вероятностей случайной величины Y, то говорят, что Х и Y имеют стохастическую зависимость. На практике часто используется связь между изменениями одной случайной величины Х и изменениями математического ожидания другой случайной величины Y, т. е. регрессия Y на Х (условное математическое ожидание): M(Y/X = x) = f(x) или регрессия Х на Y: M(X / Y = y) = f(y). Так как в математической статистике имеют дело не с числовыми характеристиками законов распределения, а с их оценками, то в качестве оценки условного математического ожидания принимается условная средняя. Определение: Условной средней называется среднее арифметическое наблюдаемых значений Y, соответствующих значению Х = х. Пример: Если при Х = 2 случайная величина Y принимает значения 3, 6, 12, то условная средняя равна: = = 7. Условные средние и являются функциями соответственно от х и y: = f*(х) (1), = φ*(y) (2). Уравнение (1) называется выборочным уравнением регрессии Y на X, а уравнение (2) – выборочным уравнением регрессии X на Y. Графики соответствующих функций f*(x) и φ*(y) называются выборочными линиями регрессии. Для данного значения Х = х наблюдается рассеяние Y около среднего значения . Мерой этого рассеяния служит условная дисперсия Y при данном значении х, обозначаемая .
Дата добавления: 2014-12-27; Просмотров: 427; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |