Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Распределённая нагрузка

Читайте также:
  1. Адаптация к физическим нагрузкам и резервные возможности организма
  2. Дневная и недельная учебная нагрузка
  3. Единство постепенности увеличения и тенденции к предельным нагрузкам
  4. К ФИЗИЧЕСКИМ НАГРУЗКАМ
  5. Клинические и функциональные признаки толерантности к физическим нагрузкам. Противопоказания для проведения нагрузочных тестов.
  6. МЕСТНАЯ УСТОЙЧИВОСТЬ СТЕНОК ПРИ СОСРЕДОТОЧЕННЫХ НАГРУЗКАХ
  7. Нагрузка в занятиях
  8. Нагрузка генератора, включенного на параллельную работу.
  9. НАГРУЗКА И АКСЕССУАРЫ
  10. Налоговая нагрузка при применении ЕСХН составляет следующие значения.
  11. Пиковая динамическая нагрузка
  12. Пожарная нагрузка в жилых домах



ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3

Пример 1.4

 

Однородная балка весом , защемлена в стене в сечении . Балка нагружена силой , приложенной в точке (Рис. 1.26). Определить составляющие реакции заделки.

 

     
     
Рис. 1.26   Рис. 1.27

 

Рассмотрим равновесие балки . Силовая схема представлена на Рис. 1.27.

Условия равновесия имеют вид:

 

 

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ:

 

1. Какой вклад вносит пара сил в уравнения равновесия?

2. Какими составляющими представляется реакция жёсткой заделки?

 

ЗАДАЧИ, РЕКОМЕНДУЕМЫЕ ДЛЯ РАЗБОРА В АУДИТОРИИ И ДЛЯ ЗАДАНИЯ НА ДОМ:

 

Из сборника задач И.В.Мещерского: 4.25; 4.27.

 

Из учебника «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА - теория и практика»: комплекты СР-2; СР-3

 

 

 

 

Поверхностные и объёмные силы представляют собой нагрузку, распределённую по некоторой поверхности или объёму. Такая нагрузка задаётся интенсивностью , которая представляет собой силу, приходящуюся на единицу некоторого объёма, или некоторой площади, или некоторой длины.

Особое место при решении ряда практически интересных задач занимает случай плоской распределённой нагрузки, приложенной по нормали к некоторой балке. Если вдоль балки направить ось , то интенсивность будет функцией координаты и измеряется в Н/м. Интенсивность представляет собой силу, приходящуюся на единицу длины.

Плоская фигура, ограниченная балкой и графиком интенсивности нагрузки, называется эпюрой распределённой нагрузки (Рис. 1.28). Если по характеру решаемой задачи можно не учитывать деформации, т.е. можно считать тело абсолютно твёрдым, то распределённую нагрузку можно (и нужно) заменить равнодействующей.

 
Рис. 1.28   Рис. 1.29
     

Разобьём балку на отрезков длиной , на каждом из которых будем считать интенсивность постоянной и равной , где – координата отрезка . При этом кривая интенсивности заменяется ломаной линией, а нагрузка, приходящаяся на отрезок , заменяется сосредоточенной силой , приложенной в точке (Рис. 1.29). Полученная система параллельных сил имеет равнодействующую, равную сумме сил, действующих на каждый из отрезков, приложенную в центре параллельных сил.

Понятно, что такое представление тем точнее описывает реальную ситуацию, чем меньше отрезок , т.е. чем больше число отрезков . Точный результат получаем, переходя к пределу при длине отрезка , стремящейся к нулю. Предел, получаемый в результате описанной процедуры, представляет собой интеграл. Таким образом, для модуля равнодействующей получаем:



 

Для определения координаты точки приложения равнодействующей используем теорему Вариньона:

 

если система сил имеет равнодействующую, то момент равнодействующей относительно любого центра (любой оси) равен сумме моментов всех сил системы относительно этого центра (этой оси)

Записывая эту теорему для системы сил в проекциях на ось и переходя к пределу при длине отрезков, стремящейся к нулю, получаем:

 

 

Очевидно, модуль равнодействующей численно равен площади эпюры распределённой нагрузки, а точка её приложения совпадает с центром тяжести однородной пластины, имеющей форму эпюры распределённой нагрузки.

 

Отметим два часто встречающихся случая.

Равномерно распределённая нагрузка, (Рис. 1.30). Модуль равнодействующей и координата её точки приложения определяются по формулам:

 

 

В инженерной практике такая нагрузка встречается довольно часто. Равномерно распределённой в большинстве случаев можно считать весовую и ветровую нагрузку.

   
     
Рис. 1.30   Рис. 1.31

Линейно распределённая нагрузка, (Рис. 1.31). В этом случае:

 

В частности, давление воды на вертикальную стенку прямо пропорционально глубине .

 





Дата добавления: 2014-12-25; Просмотров: 987; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.161.91.76
Генерация страницы за: 0.006 сек.