Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несобственные интегралы




Занятие 10.

Несобственные интегралы первого рода с бесконечными пределами определяются как интегралы вида:

, ,

Если предел существует и конечен, то несобственный интеграл называется сходящимся, если же предел не существует, то интеграл называется расходящимся.

Если непрерывна для всех значений отрезка , кроме точки с, в которой имеет разрыв второго рода, то несобственным интегралом второго рода от неограниченнойфункции называется интеграл вида:

Признак сравнения. Если функции и непрерывны на промежутке и удовлетворяют на этом промежутке условию , то из сходимости интеграла следует сходимость интеграла , и из расходимости интеграла следует расходимость интеграла .

Пример 1. Исследовать сходимость интеграла , где - некоторое число.

Решение. 1) Если , то для любого

2) Если , то для любого

.

Итак, данный интеграл при сходится, при расходится и при расходится.

Пример 2. Исследовать сходимость .

Решение. Сравним подынтегральную функцию с функцией на . Очевидно, что

.

Но интеграл сходится, так как (см. пример 1.) Следовательно, согласно признаку сравнения, сходится и данный ряд.

 

Пример 3. Исследовать сходимость , где - некоторое число.

Решение. 1) Если , для некоторого ,то

2) Если , то

,

 

3) Если , для некоторого , то

 

.

 

 

Контрольные вопросы.

1. Несобственные интегралы.

2. Признак сравнения.

Задания.

1. Вычислить интегралы

1) ; 2) ; 3) ; 4)

 

2.Исследовать сходимость интегралов

1) , 2) 3)




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 386; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.