Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Потенциальное и вихревое движение




 

Вихревое движение — движение жидкости или газа, при котором мгновенная скорость вращения элементарных объемов среды не равна нулю и всюду тождественна. Количественной мерой завихренности служит вектор ω = rot v, где v — скорость жидкости; ω называют вектором вихря или просто завихренностью. Эквивалентной мерой завихренности, более удобной в теоретических построениях, является антисимметричная часть тензора градиента скорости Ω = ½(Δv-ΔvT). В декартовых координатах x1,x2,x3 связь компонент вектора ω и тензора Ω дается выражениями

ω1 = 2Ω23
ω2 = 2Ω31
ω3 = 2Ω12
Ωij = ½(dvi/dxj — dvj/dxi)

Движение называется безвихревым или потенциальным, если ω = 0, в противном случае имеет место вихревое движение.

Векторное поле вихря удобно характеризовать некоторыми геометрическими образами. Вихревой линией называется линия, касательная к которой в каждой точке направлена по вектору вихря; совокупность вихревых линий, проходящих через замкнутую кривую, образует вихревую трубку. Поток вектора вихря через любое сечение вихревой трубки одинаков. Он называется интенсивностью вихревой трубки и равен циркуляции скорости Г по произвольному контуру C, однократно охватывающему вихревую трубку Г=∫ c vds.


За редким исключением, движение жидкости или газа почти всегда бывает вихревым. Так, вихревым является ламинарное течение в круглой трубе, когда скорость распределяется по параболическому закону, течение в пограничном слое при плавном обтекании тела и в следе за плохо обтекаемым телом. Вихревой характер носит любое турбулентное течение. В этих условиях выделение класса «вихревое движение» оказывается осмысленным, благодяря тому, что при преобладании инерционных сил над вязкими (при очень больших числах Рейнольдса) типична локализация завихрености в обособленнх массах жидкости — вихрях или вихревых зонах.

Согласно классическим теоремам Гельмгольца, в предельном случае движения невязкой жидкости, плотность которой постоянна или зависит только от давления, в потенциальном силовом поле вихревые линии вморожены в среду, то есть в процессе движения они состоят из одних и тех же частиц жидкости — являются материальными линиями. Вихревые трубки при этом оказываются вмороженными в среду, а их интенсивность сохраняется в процессе движения. Сохраняется также циркуляция скорости по любому контуру, состоящему из одних и тех же частиц жидкости (теорема Кельвина). В частности, если при движении область, охватываемая данным контуром, сужается, то интенсивность вращательного движения внутри него возрастает. Это важный механизм концентрации завихренности, реализующийся при вытекании жидкости из отверстия в дне сосуда (ванны), при образовании водоворотов вблизи нисходящих потоков в реках и определяющий образование циклонов и тайфунов в зонах пониженного атмосферного давления в которые происходит подтекание (конвергенция) воздушных масс.

В жидкости, находящейся в состоянии покоя или потенциального движения, вихри возникают либо из-за нарушения баротонии, например образование кольцевых вихрей при подъеме нагретых масс воздуха — термиков, либо из-за взаимодействия с твердыми телами.

Если обтекание тела происходит при больших числах Re, завихренность порождается в узких зонах — в пограничном слое — проявлением вязких эффектов, а затем сносится в основной поток, где формируются отчетливо видимые вихри, некоторое время эволюционирующие и сохраняющие свою индивидуальность. Ососбенно эффектно это проявляется в образовании за плохообтекаемым телом регулярной вихревой дорожки Кармана. Вихреобразование в следе за плохообтекаемым телом определяет основная часть лобового сопротивления тела, а образование вихрей у концов крыльев летательных аппаратов вызывает дополнительное индуктивное сопротивление.

При анализе динамических вихрей и их взаимодействия с внешним безвихревым потоком часто используется модель сосредоточенных вихрей — вихревых нитей, представляющих собой вихревые трубки крошечной интенсивности, но бесконечно малого диаметра. Вблизи вихревой нити жидкость движется относительно нее по окружностям, причем скорость обратно пропорциональна расстоянию от нити, v = Г/2π r. Если ось нити прямолинейна, это выражение верно для любых расстояний от нити (потенциальный вихрь). В сечении нормальной плоскости это течение соответствует точечному вихрю. Система точечных вихрей представляет собой консервативную динамическую систему с конечным числом степеней свободы, во многом аналогичную системе взаимодействующих частиц. Сколь угодно малое возмущение первоначально прямолинейных вихревых нитей приводит к их искривлению с бесконечными скоростями. Поэтому в расчетах их заменяют вихревыми трубками конечной завихренности. Узкая область завихренности, разделяющая две протяженные области безвихревого движения, моделируется пеленой — поверхностью, выстланной вихревыми нитями бесконечно малой интенсивности, так, что суммарная их интенсивность на единицу длины по нормали к ним вдоль поверхности постоянна. Вихревая поверхность представляет собой поверхность разрыва касательных компонент скорости. Она неустойчива к малым возмущениям.

В вязкой жидкости происходит выравнивание — диффузия локализированных завихренностей, причем роль коэффициента диффузии играет кинематическая вязкость жидкости ν. При этом эволюция завихренности определяется уравнением

 

При больших числах Re движение турбулизируется, и диффузия завихренности определяется много большим коэффициентом эффективной турбулентной вязкости, не являющимся константой для жидкости и сложным образом зависящим от характера движения.

Потенциальное движение (или безвихревое) – Движение жидкости происходит без вращения жидких частиц.

Движение жидкости (воздуха), при котором вихрь скорости в каждой точке поля равен нулю. При горизонтальном Б. Д.

Потенциа́льное тече́ние ---- безвихревое движение жидкости или газа, при котором деформация и перемещение малого объема жидкости происходит без вращения (вихря). При потенциальном течении скорость жидкости может быть представлена следующим образом:

где φ(x, y, z) ---- некоторая скалярная функция, называемая потенциалом скорости течения. Движение реальных жидкостей будет потенциальным в тех областях, где действие сил вязкости ничтожно мало по сравнению с действием сил давления и в которых нет завихрений, образовавшихся за счет срыва со стенок пограничного слоя или за счет неравномерного нагревания. Необходимым и достаточным условием потенциальности течения являются равенства:





Поделиться с друзьями:


Дата добавления: 2015-05-23; Просмотров: 2703; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.