КАТЕГОРИИ:
Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
|
Студопедия - категория Математика. 14 страница
Здесь лекционные материалы по категории - Математика на сайте Студопедия.
Всего лекционного материала по - Математика - 29584 публикаций.
- Уравнение спирали Корню в параметрической форме имеет вид;
- Нормальный закон распределения на плоскости;
- Уравнение траектории и ее свойства;
- Уравнения прямой, виды уравнений прямой в пространстве;
- Вариационный ряд и порядковые статистики;
- Відстань від точки до прямої. Рівняння прямої у відрізках на осях;
- Вероятностное описание результатов и погрешностей;
- Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними;
- II. Площа фігури, способи її вимірювання;
- Семейства нечётких множеств;
- Властивості логарифмів. Логарифмічні перетворення;
- Type I (Anaphylactic) Reactions;
- Взаимозаменяемость по волнистости и шероховатости поверхностей деталей. Обозначения на чертежах. Методы и средства контроля;
- Задачи математического развития дошкольников;
- Аддитивный и мультипликативный способы объединения единичных показателей качества в комплексный показатель. Отражение мат.модели КПК иерархической структуры системы показателей;
- Пример построения многогранника в диметрии;
- Алгоритм Магу для определения множества внешней устойчивости;
- Теорема о разложении определителя по элементам строки или столбца;
- Блочные матрицы;
- Линейное преобразование. Собственные числа и собственные векторы линейного преобразования;
- Бином Ньютона;
- Построение и формализация концептуальных моделей систем;
- Методика обучения. Особенности наглядного материала;
- Пример. Вопрос 2. Минор, алгебраическое дополнение;
- Гипербола;
- Статистические игры;
- Тест Тьюринга;
- Второй замечательный предел;
- И теорема Пойа;
- Моделирование случайных событий;
- Механічне застосування визначеного інтеграла. Робота змінної сили;
- Метод Гаусса с выбором максимального элемента по столбцу;
- ТЕМА 1. Основы математического моделирования;
- Дерево решений;
- Отношение рода и вида между понятиями;
- Эксцентриситет гиперболы;
- Закони Ома і Кірхгофа в комплексній формі;
- Рівновага виробника;
- Свойства операций над множествами;
- Вероятности восстановления и невосстановления обьекта;
- Целых неотрицательных чисел;
- Кривые второго порядка. Основные понятия;
- Основные сведения;
- Графики элементарных функций;
- Дидактические игры. Предварительная работа;
- Призмы усеченные;
- Показательные и логарифмические уравнения и неравенства;
- Решение. Подобрать диаметр сплошного вала, передающего мощность N=450 л.с;
- Брошены два игральных кубика. Какова вероятность того, что сумма очков равна 12?;
- Законы алгебры логики. Эквивалентные преобразования формул;
- Матриці. Різновиди матриць. Дії над матрицями;
- Действия над комплексными числами в алгебраической форме;
- Тема 5: Вероятностно-статистическая линия в школьном курсе математики;
- Требования к качеству цифровых карт;
- Задачи, приводящие к понятию производной;
- Законы Кирхгофа;
- Дотична площина та нормаль;
- Функция Лапласа;
- Дифференциальные уравнения первого порядка;
- Варіаційні задачі на умовний екстремум. Рівняння Ейлера-Лагранжа;
- Индексы средних величин;
- Обратная матрица, вычисление обратных матриц второго и третьего порядков;
- Основні закони масопередачі;
- Теорема существования и единственности задачи Коши;
- Значимость коэффициентов регрессии. Коэффициент значим, если есть достаточно высокая вероятность того, что его истинное значение отлично от нуля;
- Неравенства с одной переменной;
- Алгоритмы обработки двумерных массивов;
- Двухфакторный дисперсионный анализ c повторениями;
- Язык, порождаемый грамматикой, и сентенциальная форма в грамматике;
- Определение перемещений от температурных воздействий;
- Задачи и упражнения;
- Вероятность суммы событий;
- Косвенные измерения при нелинейной зависимости между аргументами;
- Синквейн;
- Перевірка значущості оцінки регресійних параметрів, рівняння регресії і розрахунок довірчих інтервалів;
- Теоремы о первообразных;
- Определитель матрицы;
- Канторово множество;
- Производные и дифференциалы высшего порядка Теорема о смешанных производных;
- Геометрические параметры и способы центрирования шлицевых эвольвентных соединений;
- Композиция функций (сложная функция, суперпозиция функций;
- Сочетания с повторениями;
- Системы и совокупности уравнений;
- Абсолютная и относительная погрешности. Формы записи данных;
- Лекція 5;
- Статистика;
- Сокращенная стрелочная улица;
- Критерий знаков для анализа парных повторных наблюдений;
- Алгебра подій;
- Щільність розподілу;
- Четвертьсумматор;
- Непосредственное вычисление определенного интеграла;
- Введение понятия функции;
- Основные NP-полные задачи. Сильная NP-полнота;
- Окружность, как частный случай эллипса;
- Слабая компактность;
- Точные и приближенные методы решения систем линейных уравнений;
- Розподільний закон множення;
- Параметри шрифтів 6 страница;
- История искусственного интеллекта;
- Размах вариации. R;
- Задачи, приводящие к понятию производной;
- Бесконечно большие последовательности и их свойства;
- Перечень вопросов к экзамену по статистике;
- Моделювання факторних систем;
- Інтегрування деяких видів ірраціональних функцій;
- По дисциплине. «Метрология, стандартизация и сертификация»;
- Количественные показатели надежности невосстанавливаемых систем;
- Задачи для самостоятельного решения. Определить острый угол между прямыми y = –3x+7 и y = 2x+1;
- С помощью логики предикатов;
- Директориальное свойство эллипса и гиперболы;
- Арифметическая и геометрическая прогрессии;
- Условная вероятность. Теорема умножения вероятностей;
- СМО с ограниченной очередью;
- Решение. Теоретические вопросы;
- Нахождение значений логарифмов ( по определению) Непосредственное вычисление, преобразование оснований и подлогарифмических выражений;
- Розрахунки розмірів калібрів для контролю циліндричних валів і отворів;
- ЛЕКЦИЯ №5;
- Дифференциальные уравнения семейства кривых;
- Базы данных. Вопросы по теории проектирования реляционных баз данных;
- Пример построения вариационных рядов, вычисления средних величин, создания графика распределения признака и проверки на нормальность распределения;
- Эмпирические асимметрия и эксцесс;
- Приведение уравнения к каноническому виду;
- Решение. Отрезок, соединяющий центры двух пересекающихся окружностей, делится их общей хордой на отрезки, равные 5 и;
- Графические возможности системы Mathcad;
- Полный образ и полный прообраз;
- Математика;
- Геометричні застосування скалярного добутку;
- Распознавание арифметических выражений;
- Взаимное положение прямых;
- Александр лобок;
- Интерполяционные формулы для равноотстоящих узлов;
- Объединение множеств. в которое включим элементы, принадлежащие хотя бы одному из данных множеств, т.е;
- Формулы приведения для тригонометрических функций;
- Дисперсия и среднее квадратическое отклонение;
- Бесконечно малые функции и их свойства;
- Вопрос 1. Сущность и принципы статистического наблюдения;
- Парабола. Касательные к эллипсу, гиперболе и параболе;
- Площадь произвольной плоской фигуры и ее измерение;
- Непрерывность функции в точке;
- Предельный переход в неравенствах;
- Свойства корреляционного момента;
- Теоретическая часть. Понятие разбиения множества на классы;
- Теоремы Лапласа и аннулирования;
- Дифференциальное исчисление;
- The School Curriculum and Academic Programs;
- Поле двух параллельных заряженных осей;
- Задачі на використання формул при повторних випробуваннях;
- Матрицы, их виды, линейные операции над матрицами;
- Общие сведения о цепях Маркова;
- Пример трехмерного массива;
- Текстові задачі;
- Неравенство Чебышева и его частные случаи для случайной величины, распределенной по биномиальному закону, и для частости события;
- Построение гистограммы с графиком функции плотности вероятности нормального распределения;
- Контрольная работа. 1. Следующее высказывание может быть интерпретировано как сложное высказывание: Неверно, что первым пришел Петр или Павел;
- Никаких других формул в логике высказываний нет;
- Примеры. 34. Пользуясь формулой Остроградского-Гаусса, вычислить интеграл , где Ф – внешняя сторона сферы (x–a)2+(y-b)2+(z–c)2=R2;
- Ознайомлення учніві назвами, послідовністю, позначенням чисел у межах першого десятка. Навчання лічби предметів. Ознайомлення учнів з кількісним і порядковим значенням числа;
- Линеаризация дифференциальных уравнений САУ разложением в ряд Тейлора;
- Геометрические параметры передачи;
- Абстрактные типы данных. Методы представления множеств;
- Многочлены Чебышева;
- Равенство Маркова;
- Разбиение системы на звенья;
- Нескінченно великі послідовності, зв'язок з нескінченно малими;
- Корреляция между антропометрическими признаками;
- Основные теоремы матричных игр;
- Булеві формули і пріоритет операцій;
- Производные критерии;
- Арифметика с плавающей точкой;
- Системы координат на прямой, в плоскости и в пространстве;
- Замыкание систем функций алгебры логики;
- Источники и виды погрешностей. Абсолютная и относительная погрешности. Вычислительная погрешность и погрешность функции;
- ЛЕКЦИЯ 6. Случайный процесс как модель сигнала;
- Тема 4. Частные производные. Дифференциал функций нескольких переменных. Геометрический смысл дифференциала ФНП. Условия дифференцируемости;
- Дополнительная часть;
- Основная теорема;
- Алгебра и сигма-алгебра событий;
- Параметры шероховатости и волнистости поверхности;
- Условие тождественности двух многочленов;
- Планируемые результаты изучения учебного предмета;
- Методика обучения. Особенности наглядного материала;
- Бескоалиционные игры. Неантагонистические игры;
- Task to Unit 5;
- Обобщенная модель АЛУ;
- Метод Ньютона;
- Переместительное свойство абсолютно сходящихся рядов;
- Приведение плоской системы сил к данной точке;
- Биноминальное распределение;
- Перечень компетенций;
- Общее понятие статистики. Предмет статистики;
- Полные системы векторов;
- Порядок действий в арифметических выражениях;
- Тема. Вычисление неопределенных интегралов;
- Уравнение и кривая равновесия фаз бинарной смеси;
- Параллельные и перпендикулярные прямые;
- Гармоническое векторное поле;
- Дисперсионного анализа;
- Метод насыщения уровня;
- VIII. Дисперсионный анализ;
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 |
|